If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=x^2+10x-1296
We move all terms to the left:
0-(x^2+10x-1296)=0
We add all the numbers together, and all the variables
-(x^2+10x-1296)=0
We get rid of parentheses
-x^2-10x+1296=0
We add all the numbers together, and all the variables
-1x^2-10x+1296=0
a = -1; b = -10; c = +1296;
Δ = b2-4ac
Δ = -102-4·(-1)·1296
Δ = 5284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5284}=\sqrt{4*1321}=\sqrt{4}*\sqrt{1321}=2\sqrt{1321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{1321}}{2*-1}=\frac{10-2\sqrt{1321}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{1321}}{2*-1}=\frac{10+2\sqrt{1321}}{-2} $
| ½(10x-8)=-2(x+3) | | 13x=93 | | 6=4x +2 | | -10x+35=16x+42 | | G-5=14/g=9 | | 3x+20=x-15 | | 4(x+1)-2x=2x+7 | | x-8+x+8+2x+7+x+3x-11=360 | | 3(8-5d)= | | 8^(2x-1)⋅(1/16)^x+2=1 | | -3x+6=-6x+9 | | 175x+275=160000 | | 4x-6=-4x+3 | | -1=-7+-2x | | 2x–14= | | 8v+25=–63 | | 5x^2+14x–21=4 | | 2(7h+9)=¬ | | 300=p*51 | | 4(x-8)+7=3x-3 | | 3h+–5=–14 | | N=70=200-(15x4) | | -12=-x6 | | 12=u/5+7 | | W/2=16;w=32 | | 4x+1=x–7 | | -3x–18= | | 3x+6=3(x+11) | | 3(x-4)+5=2x-2 | | x=180-118-43-39 | | 4(5.1-2.3m=) | | 19=u/13 |